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Viscosity of polymer solutions 
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England 
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Abstract. A cluster expansion theory is developed for the shear viscosity of solutions of 
linear polymers in the steady-state limit as a virial series in concentration. By assuming the 
chains to be rigid with respect to the translational diffusion of the centres of mass and the 
rotational motion of the chains, the Kirkwood-Riseman results for the translational and 
rotational friction coefficients are recovered at infinite dilution. The intrinsic viscosity is the 
same as that of Kirkwood and Riseman if the angular velocity of any segment of a chain is 
replaced by the configurationally averaged angular velocity of the chain. The multiple 
scattering technique and the conventional pre-averaging approximation are utilised in the 
analysis. Within these approximations, there is no hydrodynamic screening at infinite 
dilution in contrast with the results of Freed and Edwards. Every virial coefficient in the 
present formulation for the viscosity is convergent so that the viscosity can be directly 
determined to any desired order in concentration. The cluster expansion for viscosity has 
been converted to a set of coupled equations similar to the one obtained by Freed and 
Edwards but with different structure. 

I. Introduction 

Although the literature on the theoretical study of the frictional properties of polymers 
in infinitely dilute solution is rich (see e.g. Yamakawa 1971, Stockmayer 1976), there is 
only one theory, due to Freed and Edwards (1974, 1975a, b), to discuss the transport 
coefficients of polymers in solutions at non-zero concentrations. By incorporating both 
the intramolecular and intermolecular hydrodynamic interactions, these authors pro- 
vided a multiple scattering theory and showed how Zimm and Rouse limits follow at 
very low and very high polymer concentrations, respectively. The Rouse limit emerges 
because of the screening of hydrodynamic interactions among the various segments of 
any given chain by all other chains. Despite its success in giving the concentration 
dependence of relaxation lifetimes of polymer modes in dilute solutions (Muthukumar 
and Freed 1977, 1978) and other related properties (Metiu and Freed 1977), the 
Freed-Edwards theory suffers from the following deficiencies. 

(i) The net force acting on a single polymer chain in the absence of any external 
forces does not vanish in this theory, thus violating the conservation laws (see equation 
(8.5.9) of Freed (1978)). 

(ii) The intrinsic viscosity [v] calculated using this theory is higher than the 
experimental value by a factor of about two and is exactly twice the value obtained by 
Kirkwood and Riseman (1948) in the steady-state limit. In addition, the theoretical 
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Huggins coefficient is smaller by a factor of two than the experimental value. (The 
calculation of the Huggins coefficient for linear polymers in 8 solvents by Freed and 
Edwards (1975a) contains a numerical error and the value is actually 0.3787. In 
addition, their value of [q] is a factor of two larger than their reported result.) 

(iii) The rotary motion and the translational diffusion of the polymer chains are not 
explicitly taken into account. This leads to a hydrodynamic screening even for an 
infinitely dilute solution. This screening is equivalent to that of Darcy flow through a 
stationary suspension of spheres (Freed and Muthukumar 1978) and is to be contrasted 
with the absence of hydrodynamic screening for a mobile suspension of hard spheres at 
low concentrations (Muthukumar and Freed 1980). 

In this paper, we present a general multiple scattering theory free from the above 
deficiencies. The translational diffusion and the rotary motion of the various polymer 
chains are incorporated explicitly by assuming that the chains are rigid with respect to 
these degrees of freedom. The formal mathematical treatment is presented in Q 2 and 
we obtain a set of equations for the combined polymer-fluid system. In order to make 
the concepts and techniques of multiple scattering clear, we first study the case of one 
polymer chain present in a solvent. Restricting ourselves to the steady-state limit we 
begin with the set of equations derived above to obtain the velocity field. The formal 
theory is presented in D 3. In the infinite dilution limit, we calculate the intrinsic 
viscosity, translational and rotational friction coefficients within the framework of the 
pre-averaging approximation and these are shown to be the same as the Kirkwood- 
Riseman results. Section 4 contains the details of these calculations. The hydro- 
dynamic screening is also evaluated in this section. A cluster expansion for the specific 
viscosity qsp of the polymer solution as a function of concentration is developed in 8 5 
and the results are discussed in the last section. 

2. Mathematical formulation 

For conservative dynamical systems, the equations of motion can be derived by varying 
the time integral of the Lagrangian 3 

6 dt3[q ,  4, . . .] = 0 (2.1) 

where q is a generalised coordinate. When frictional forces are present, Rayleigh’s 
dissipation function 9[4]  (Whittaker 1937) should be constructed and the Rayleighian, 
92 = 3+ 9, is varied to obtain the equations of motion 

We now derive the equations of motion for the combined polymer-fluid system. The 
solvent alone is assumed to satisfy the linearised Navier-Stokes equation 

av(r, t )  
~o------qov~v(r, at t ) + v ~ ( r ,  t )  =o.  (2.3) 

Here U (r,  t )  is the velocity field at any space point r and time t, P is the pressure, qo is the 
shear viscosity of the solvent and po is the mass density of the solvent. The polymer is 
taken to be a chain of n beads which are assumed to be point friction sources, each with 
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mass m. The molecular weight of the chain, M, is nm. In general, the polymer chain 
obeys an equation of the form 

where Raj is the position vector of the ith bead of the chain cy and r is the hopping time 
given by Verdier and Stockmayer (1962) and Edwards and Goodyear (1972). The 
second term of (2.4) is to be interpreted as an operator expression and describes any 
desired model dynamics of the chain. We now assume that the chain can undergo rigid 
body rotation when a torque is applied. The velocity of the ith bead is therefore given 
by 

R*i = R: + 0, x sai (2.5) 

where kz is the translational velocity of the centre of mass of cy, oa is the angular 
velocity of a, and Sai is the position vector of the ith bead with respect to the centre of 
mass of CY, Sei = Rei -Re. 

The dynamics of the fluid and the chains.are coupled by hydrodynamic boundary 
conditions. For simplicity we use the no-slip boundary condition, 

0 

U (Raj) = Raj. (2.6) 
The Rayleighian appropriate to the combined polymer-fluid system containing N 

chains is then 

8 = 3, + 9, +2?p + Pp + Psp (2.7) 
where 

zs = - 

Ps = -$VO I dr  dt[Vu(r, t)]’+ I dr  dtP(r, t)V u(r ,  t )  

dr  dt v2( r ,  t) + dr  dt Q(r, t )  
2 I I 

Here uai are Lagrange multipliers to ensure the no-slip boundary condition. CP, and CPp 
are any net potential fields present in the solvent and polymer, respectively. When the 
rigid body rotation condition (2.5) is included we obtain 

d i u ,  a l u . ~ , + C  dtQp(Rai( t ) , t )  
a ai J 
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g s p = X  1 d tua i ( t )  k : ( t ) + w ,  xSai( t ) -u  dt‘(kZ(t’)+w, xSai(t’)), t]]. 
ai 

In these equations I, is the inertia tensor of a and x ,  y and z are the principal axes in 
which I is diagonal. Introducing a field X ( r ,  t )  where aX(r, t ) /a t  = u(r, t ) ,  the equation 
of motion for the fluid is given by 

d azs azs a 
d t  a x  ax ax +-(.Fs+.Fsp) = 0 

where S(r )  is the Dirac delta function. 
The equation of motion for the centre of mass of a is given by 

a azp azp a 
a t  ak: aR, aR, 

0 + ~ ( ~ p + F s p ) = o  

(2.10) 

Equations (2.10) specify three degrees of freedom for the rigid chain. The other three 
degrees of freedom are obtained by considering the rotary motion of the chain in terms 
of the three Euler angles 8, C$ and $. These are related to the components of w along the 
principal axes as (Whittaker 1937) 

wx = qi sin 0 sin 9 + ti cos 

w y  = qi sin e cos $ - 0 sin + 
0, = qi cos 0 +$. 

(2.11) 

Out of the three generalised forces corresponding to 0, 4 and I,$, only one, namely, 
-dQP/a$, gives the torque along one of the principal axes ( z  axis) N,. Therefore taking 
$ as the generalised coordinate we get 

a azp azp a 
a t  a$ a$ a$ + -7(.Fp + .Fsp) = 0 (2.12) 

The equations for torque along other principal axes of a are obtained by permuting the 
indices in (2.13). Since the frictional terms dominate over the inertial terms in this 
problem, the latter can be safely ignored. In the static limit, we obtain from (2.5), (2.6), 
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(2.9), (2.10) and (2.13) 

( 2 . 1 4 ~ )  

(2.14b) 

( 2 . 1 4 ~ )  

(2.14d) 

Since the Lagrange multiplier uai possesses a simple physical interpretation of force 
exerted by the ith bead of chain a on the fluid, (2.14) are intuitively obvious. 

3. Infinite dilution limit 

In this section we consider the change in shear viscosity of the solvent due to the 
presence of one polymer chain (say CY) in the static limit. When the inertial terms are 
ignored the equations of motion for the combined polymer-fluid system are given by 
(2.14). Since there is now only one chain, ( 2 . 1 4 ~ )  reads as 

Now we seek to obtain an expression for the velocity field u(r) from (3.1) by 
eliminating the unknown {uai}. The formal solution of (3.1) is 

n 

u ( r ) =  dr’G(r-r’)  * F ( r ’ ) +  8(r’-Rai)u,i 5 i = l  

where G(r) is the familiar Oseen tensor 

(3.2) 

Substitution of (3.2) into (2.14d) yields 

We now define an inverse operator K,’ as 
n 1 K,l(Sai, S m p )  * & ( S a p  - S m j )  = ISij. 

p = l  
(3.6) 

Multiplying (3.4) by K,l(S,, Sap) and summing over p, we obtain an expression for umi, 

uoj = - 1 5 dr’ Ki1(Smi, SmP) G(R,, -r’) 0 F(r’) + K,’(S,, Sap)  * (U, + w, x Sap) .  
p = l  p = l  

(3.7) 
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A closed expression for vmi can be obtained by eliminating U, and U), by the use of 
(2.14). The insertion of (3.7) into (2.14) yields 

This equation possesses a simple physical interpretation. The 2 x 2 matrix appearing in 
the first term on the right-hand side of (3.8) is the microscopic friction tensor matrix. 
When an average over the distribution of the beads i and j of the chain is performed, 
the elements of this matrix provide the polymer friction coefficients. The translational 
friction coefficient, f,, and the rotational friction coefficient, fr,  are given by the diagonal 
elements, 

(3.9) 

where the angular brackets denote the averaging over the distributions of i and j .  ft and 
f r  are explicitly evaluated in the next section within the pre-averaging approximation. 
The cross friction coefficients given by the off-diagonal elements of the 2 x 2 matrix 
vanish within the pre-averaging scheme. Therefore, we ignore these cross trans- 
lational-rotational friction terms in the following derivation for notational con- 
venience, but keep them in the general derivation presented in § 5. 

When the external forces and torques vanish, fa = 0 =N,, (3.8) and (3.9) give 

where 

g, * g;' = I and g, g;' = 1. (3.11) 

Substituting (3.10) into (3.7) gives 

+E K ~ ~ ( s ~ ~ ,  sep) xs,, e g, -1 e sap, x K ~ ~ ( S , ~ , ,  sei)) - G(R,, -r') - F(r ' ) .  
PP' 

(3.12) 

Inserting (3.12) into (3.2), we obtain an expression for the velocity field u ( r ) ,  

dr '  G ( r  - r')  * F(r ' )  + dr' dr" dr"' G ( r  - r')  0 T, (r' ,  rf') * G(r", r'") - F(r"') I 
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where 
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+E Ki1(Sa, S,,)xS,, * g ,  -1 Se,,xK,'(S,,,,,S,j))s(r'-R,i). (3.13) 
P P ,  

This is the equation we set out to derive. 
Now we proceed to evaluate the change in shear velocity due to the added chain as 

follows. Upon averaging (3.13) with respect to the random distribution of R: we obtain 

V(r) = (u(r)) = 1 dr '  G(r - r') * F(r') 

+ dr '  dr" dr"' G(r - r') (Te(r', r")) * G(r"-r'") F(r"'). (3.14) 

Alternatively we can write an equivalent expression for (u(r)) by performing this 
average on (3.1) directly. This yields 

J 

-qoV2  V(r) +V(p(r))  - J dr '  Z(r - r') ~ ( r ' )  = F ( r )  (3.15) 

where 

(3.16) 

Thus all the contribution of the chain a to the dissipation mechanism of the fluid is 
contained in (3.16). This is actually the average contribution of chain cy to the 
divergence of the stress tensor for the fluid. The formal solution of (3.15) is now 

V(r)  = 1 dr '  G(r  - r') - F(r')  + dr '  dr" G(r  - r') * Z(r ' -  r") V(r"). 

This is an integral equation that can be iterated indefinitely, 

(3.17) J 
V(r) = 1 dr '  G(r - r') F(r') + G - Z * G F + - e .  J (3.18) 

Since we are interested in very dilute solutions we truncate the series in (3.18) at the 
second term and a comparison with (3.14) gives an expression for the unknown Z, 

(3.19) X(r - r') = (T, ( r  - r ' ) ) .  

Defining the Fourier transform as 

~ ( k )  = J d r F ( r )  exp(-ik * r )  (3.20) 

where k is the Fourier variable conjugate to the position variable r, (3.15) becomes 

[1q0k2 - Z ( k ) ]  - V(k) +ikP(k)  = F ( k ) .  (3.21) 

Thus clearly the change in shear viscosity of the fluid, 677, due to the added polymer 
chain is given by - E k Z ,  the k 2  term of - 8 ( k ) .  Therefore the intrinsicviscosity is given by 

8v/voC = -NCk2/qoCk2 (3.22) 
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where N is the total number of polymer chains (assumed in this section to be 
non-interacting) present in the solution and c is the polymer concentration. The 
explicit evaluation of [77] according to (3.22) is presented in the next section. From the 
structure of equation (3.21), the hydrodynamic screening is given by Z ( k  = 0) and its 
value is presented below. 

4. Calculation of f , ,  fr and [ ~ 7 ]  

In this section, we present the algebraic details for the calculation of these frictional 
coefficients. Here we assume that the chain possesses Gaussian statistics. Further we 
employ the simple and convenient pre-averaging approximation. These approxima- 
tions may be lifted if desired without any new conceptual difficulties. 

4.1. Translational friction coeficient 

Converting the summations in (3.9) to integrals with the changes of variables x = 
2 i /n  - 1 and y = 2j/n - 1, we obtain 

(4.1) 

where the angular brackets indicate the average over the Gaussian distribution for the 
various polymer segments. Expanding (K-'(x, y )) in double Fourier series 

w m  

(K-'(x, y ) )  = C K;:, exp(i.rrp.x -i.rrpfy) 
&=-a &'=-* 

with 

f t  is readily given by 

f t  = n2Kii 

Using the pre-averaging approximation we get from (3.6) 

where 

m 

&,&L'=--m 
(K(x, y ) )  = 1 Kw&, exp(i.rrpx - i rp ' y ) .  

For a Gaussian chain 

(4.2) 

(4.3) 

(4.4) 

(4.5) 

(4.6) 
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where 1 is Kuhn step length. Therefore, substituting 

( K b ,  Y ) > =  (1 /6n~00(12 /nnIx  - Y  

into (4 .3,  we obtain 
1 1 ’  

27701 -1 
KOO = - dx J”-, dy(12n3n Ix - yl)-’” 

2137 

(4.7) 

(4.8) 

Combining (4.3), (4.4) and (4.8), the translational friction coefficient readily reduces to 
the familiar Kirkwood-Riseman result for the non-free-draining limit 

f t  = 3/8hJii. (4.9) 

4.2. Rotary friction coefficient 

Utilising the pre-averaging approximation in (3.9), the rotary friction coefficient 
becomes 

Changes of variables, x = 2i/n - 1, readily yield, for a Gaussian chain, 

where 

f(x, y )  = (n12/24)[3(x2+ y2)-61x - yI +2]. 

Expanding f (x, y ) in double Fourier series, 

and using (4.2) in (4.11), we obtain 

From (4.5) and (4.7), K,+,f is given as 

K,,, = 4h I-: dx J-: dy Ix - y exp(-i.rrpx + inp’y) 

p = Q = p ’  

p ZO. 

(4.10) 

(4.11) 

(4.12) 

(4.13) 

(4.14) 
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In obtaining (4.14) we have employed the Kirkwood-Riseman approximation of taking 
the asymptotic result for large IpI and lp'( of the integral appearing in (4.14). 

Now from (4.14) and (4.12), for p # 0, 

= (ni2/2r2p2) .  (4.15) 

Since f o o  vanishes, substitution of (4.4), (4.14) and (4.15) into (4.13) yields 

m 

u = l  

1 / 2  3 / 2  f r=(2n12/3r2> [ l / h 2  p 1. (4.16) 

By a similar argument, it can easily be shown that the cross translational-rotational 
friction coefficients vanish. 

4.3. Intrinsic viscosity 

From (3.19) and (3.13) 

where V is the total volume of the system. Therefore the k 2  component of Z ( k )  is given 
exactly by 
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The first term on the right-hand side yields, upon pre-averaging, 

(4.19) 

where (4.10) and (4.16) are utilised. The second term on the right-hand side of (4.18) 
gives, when pre-averaged, 

- ( 1 (k * Si)(k S,)K-'(Si, S,) * 9;' * K-'(S,,, Sj)) 

iiw' 

iiw' 

= -i(k2/ft) 1 (Si * S,)(K,')(K;f). (4.20) 

Converting these sums into integrals and expanding (Si - Sj), (KG1 ) and (IC,; ) in double 
Fourier series we readily get a value of -k2foo/3Ko&oo for (4.20). This vanishes since 

In the evaluation of the third term on the right-hand side of (4.18), we further 
assume that the angular velocity of a bead is the same as the configuration averaged 
angular velocity of the chain. This then yields upon pre-averaging 

(,E (k * S i ) ( k  Sj)K-'(Si, S,) x S, * 9;' S,, x K-'(S,,, Si) 

foo = 0. 

(4.21) 

Transforming the sums into integrals and expanding the various averages appearing in 
(4.21) in double Fourier series, and combining with (4.10) and (4.16), (4.21) becomes 

) W P '  
1 -1 2 

= -gfr k (I - k-'kk) 1 (Si * S,)(S,f * Sj)(K,' )(IC;; ). 
i i p p  ' 

m 

& = l  
-(n12/6.rr2)k2(1- k-'kk) p-3/2/JZh. (4.22) 

Since we are interested in the shear viscosity, combining (4.22), (3.22), (4.18), (4.19), 
(4.20) and (4.22), we obtain for [77] 

(4.23) 

where we have used the identity c = NM/NAV, where NA is Avogadro's number. 
Equation (4.23) is identical to the result of Kirkwood and Riseman (1948) for the 
non-free-draining limit. 

4.4. Hydrodynamic screening 

From (3.13), (3.19) and (3.20), Z(k = 0) becomes, upon pre-averaging, for N chains 

(4.24) 
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From (4.1), we see that the first and second terms on the right-hand side of (4.24) are f t  
aqd -ft, respectively. The third term vanishes. Therefore there is no hydrodynamic 
screening. 

5. Cluster theory for shear viscosity 

In this section we consider a suspension of N polymer chains each with n beads. Here 
we incorporate the inter-chain hydrodynamic interactions explicitly. Except for this 
additional feature, the derivation is identical to the one presented in 8 2. 

5.1. Formal velocity field 

The equation of motion for the fluid containing N chains is 

The formal solution of (5.1) is 

Combining (5.2) and (2.14d) yields 

U, + U, x s a p  

= J dr' G(R,, - r') * F(r ' )  + 2 K ,  (sap - Saj )  a,; 
;=l  
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x (I dr' G(Ra, - r') * F(r ')  + 1 G(Rap - RPp,) up,.> (5.6) 
P + e  P '  

where g-' are given by 

Insertion of (5.6) for U, and w, into (5.4) yields 

(5.9a) 

u(O)(r) = dr' G(r - r') - F(r') (5.9b) I 
N 

u(')(r)= 1 dr'""dr"'G(r-r') *Ta(r'-r' ') *G(r"-r"') -F(r'") ( 5 . 9 c )  
a = l  

(5 .9d )  

where T, is 
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Note that the single chain operator T, ( r  - r’) depends on the centre of mass of the chain 
a through Rei(=& +Sai) and Rei. 

5.2. Average velocity field 

As in 0 3, we write an effective Navier-Stokes equation for the average velocity field in 
the whole polymer solution, 

-q0V2V(r) +V(P(r))  - 5 dr’ Z(r  - r f )  * V(r’) = F(r’) 

where 
N n  5 dr’ Z(r -r’) * V(r’) = ( 1 6(r  -Rai)uar) .  

a = l  r = l  
(5.11) 

This term corresponds to the contributions of all the chains to the divergence of the 
stress tensor for the fluid. Here the angular brackets indicate an ensemble average with 
respect to the distribution of all the centres of mass of the chains. The configurational 
average for any individual chain is implicitly present in the derivation and is explicitly 
expressed only in the algebraic calculations of the final steps. Similar to (3,18), we can 
write an expression for the average velocity field with the new definition of Z for N 
chains, (5.11), as 

= dr’ G(r - r’)  * F(r’) + dr’ dr” dr”’ G(r - r’) * Z(r’- r”) J 
- G(r”-rf”) *F(r“’)+ dr‘dr’’dr’f’dr’vdrvG(r-r’) *Z(r ‘ - r” )  

(5.12) 

I 
e G(rf’-r”’) 8 Z(rr”-r iv) .  G(riv-rV) e F(r’)+. 

Since Z is the net effect of all the multiple scattering disturbances of the velocity field 
involving all N chains, it is convenient to define it as 

00 

Z(r - r’) = 1 Z ( j , ( r  - r’) 
i = l  

(5.13) 

where Z ( j )  represents a multiple scattering sequence with j factors of Tia). By 
substituting (5.9) for v(r) in (5.12) and then combining with (5.13) it follows that 

N 

Z(21(r-r’)= 1 J dr” dr’”(T,(r-r‘’) G(r”-rfff)  TP(r’”-r’)) 
a = l  p t a  

- dr” dr”‘(P, (r  - if)) G(r” - r”’) * (To (r’” - r‘)) 
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Z.(3)(r - r’) = I dr” dr’” driV dr’[ (T, ( r  - r”) * G(r”- r”’) 
a 

P # ,  
V i ’ P  

- 1 ( T , ( r - r ” ) )  G ( r ” - - P )  - (Tp(r’”-riV). G(r iv- rV) .  T,,(~”-~’))  
a.0 

v + P  

- 1 (T , ( r - r” )  * G(r”-r”’) .Tp(r“‘-riv)).  G(riv-rV).  (T,,(r”-r’)) 
a.-? 

P # a  

+ (T,(r-r”)) G(r”-rf”) * ( T p ( r f ” - r i V ) )  - G(riv-r”) (T,,(r”--r‘)) . 1 
(5.14) 

Note that although Z(31 represents a sequence of three scattering events, one of such 
sequences can involve only two chains, e.g. when y = a. Therefore it is convenient to 
rearrange the various terms in the infinite series (5.14) so as to yield a virial expansion 
for 2 in the number of distinct chains participating in a scattering sequence 

(5.15) 

where 8, depicts the contribution arising from all the multiple scattering events taking 
place among any set of i distinct polymer chains. Except for Z l ( r  - r’), every Zi  is an 
infinite multiple scattering series. The leading terms of a few of these are 

N 

Z l ( r  - r’) = ( 1 T,(r - r ’ ) )  
,= l  

Zz(r - r’)  = dr“ dr”’ 1 (T, ( r  - r”) * G(r” - P) * To (r’” - r ’ ) )  I [,I,,#, 
-1 1 ( T , ( r - r ” ) )  * G(r”-r”’) * (TP(rf”-r’))] 

0 : P  

+ dr” dr”’ drlV dr” (T, (r - r”) G(r” - r”’) 1, 
P +a 

J 
TP(r”’ - rl”) * G(rlv - r”) T, (r” - r ’ ) )  

- 1 (T,(r-r”)) G(r”-rff’) (Tp(rf”-rlV) - G(r”‘-r”) -T,(r”-r‘)) 
a 

P # ,  

- (T, ( r  - r”)  * G(r” - r”’) * Tp(r”’ - r’”)) * G(rlv - r”) (T, (rv  - r’)) 
(I 

P # u  

I +I (T , ( r - r” ) )  * G(r”-r”’) * (TP(r”’ -r1”))  G(r’”-rV) (T , (rv-r ’ ) )  
4 

+. * .  
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(5.16) 

Thus (5.15) is a cluster expansion in increasing order of concentration. This, when 
substituted into (3 .22 ) ,  yields a virial expansion in concentration for the specific 
viscosity of the polymer solution. The ensemble averages of the various terms present 
in X i  of (5.16) can, in principle, develop concentration dependencies owing to the 
concentration dependence of distribution functions so care must be exercised in 
collecting the various virial coefficients. 

It is convenient to employ a pictorial representation for the terms in (5.16). Each 
factor of T is represented by a single broken line and each G is depicted by a single 
horizontal line. The presence of an average over the centres of mass of the chains is 
represented by a single bubble. The broken lines, associated with a given chain, are 
joined together at the bubble. When t distinct chains are involved in a term in (5.16), 
then in the corresponding diagram there are t distinct points along the contour of the 
bubble at which broken lines intersect it. In writing these diagrams the exclusion 
condition, requiring that no two successive broken lines are associated with the same 
chain, should be borne in mind. Using this nomenclature, (5.16) is diagrammatically 
presented in figure 1. 

E ,  = j 

Figure 1. Diagrammatic representation of equation (5.16) for the general case. 

The averaging with respect to the centres of mass, the integrations over all spatial 
positions and the summations over the chains are understood to be taken in these 
diagrams. Also, a diagram involving x chains and y scattering operators includes all the 
terms in (5.16) with x chains and y scattering operators. For example, the first diagram 
for Z3 in figure 1 represents the square bracket on the right-hand side of & in (5.16). 
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5.3. Specific viscosity in ideal solutions 

Under 6 conditions, the average polymer-polymer interaction and polymer-solvent 
interaction cancel each other so the effective potential energy of interaction of the 
chains can be taken to be zero. Now, (5.16) simplifies to 

Z 2 ( r  - r‘)  = (F) dR: d R i  dr”  dr”’ driV dr’ T,(r  - r”) * G(r”-  r”’) 

. T !3r ( 111- riv) . G(ri’ - r’) * T, (r’ - r ‘ )  + . (5.17) 

etc. The multiple scattering series given by (5.17) for 8 solutions is diagrammatically 
represented in figure 2. The broken lines which are connected at the top correspond to 
terms involving fluid scattering by the same chain. 

I ,  = 

Figure 2. Diagrammatic representation of equation (5.17) for ideal solutions. 

As explained in § 3, the k 2  term of Z ( k )  defined by 

Z ( k )  = j d r  X(r)  exp(-ik r )  (5.18) 

gives the change, 877, in shear viscosity of the polymer solution as 

(5.19) - ( I -k-2kk)  877 = - ( 1 / ~ 0 C k 2 ) ( 1 - k - 2 k k )  ’ X k Z .  
770C 

Explicit evaluation of the terms in (5.17) and then combining with (5.15), (5.18) and 
(5.19) gives the specific viscosity as a function of concentration to any desired orderin 
concentration. 
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6. Discussion 

The formal solution of (5.11) for the average velocity field can be expressed as 

where &(r - r ’ )  represents the average hydrodynamic interaction between any two 
spatial points r and r‘ in the whole polymer solution. All the complexities and the 
dynamic consequences arising from the various multiple scattering sequences between 
the chains are implicitly present in e. Comparison of (6.1) with (5.11) readily yields 

where Z ( k )  is given by (5.18), (5.15) and (5.16) for 8 solutions. Summarising, we have 
the coupled equations 

Z ( k )  = f / dr  Z i ( r )  exp(-ik r )  
i = l  

(6.36) 

where 2, are given by (5.16). For ideal solutions, Z, should be obtained from (5.17). 
When the rotational and cross translational-rotational terms are suppressed in the 
various integrals of (5.17), the set of coupled equations of (6.3) is identical to the one 
given by Freed and Edwards. 

Now, the Huggins coefficient, kH, defined by 

( 7 7 - T o ) / v o C  - [ T ] + ~ H [ T I ~ C + ’  ‘ * (6.4) 

can be calculated by two methods. The first method is an iterative one and involves the 
following steps. Determine K, from ( 6 . 3 ~ )  in the infinite dilution limit, when Z ( k )  is 
absent. Truncate the series in (6.3b) at i = 1. Substitute infinite dilution value of K, in 
the expression for Zl according to (5.16). Use this in (6.36). This gives Z“’ (k )  
proportional to concentration. (This determines the intrinsic viscosity.) Insert this 2“’ 
in ( 6 . 3 ~ )  to obtain the concentration-dependent Kc). When this is utilised in (6.36) we 
get Z(’) (k)  up to order c2. From (5.19), k H  can be calculated. 

The second method is a more direct one. As outlined in § 5 ,  we already have a virial 
expansion for the specific viscosity. For the determination of kH we need to consider all 
the diagrams in figure 1 which contain two distinct chains only. Restricting ourselves 
only to the leading diagram, Zi, namely, the first on the right-hand side of Zz in figure 2, 
we get from (5.17) and (5.10) 

Z i ( r - r ’ ) = ( $ ) ’  , C , J dR: dROp~(r-R:- -Sal ) t , (S , , ,S , , )  
v m  PP 

* G(R: +Sui - ROp - §op)  * fo(Sop, Sop,) * G(ROp + Sop, - RO, -Sam) 

- f,(S,,, S a d )  S(r’-RE -Se , , )  (6.5) 
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Using the Fourier representations of the delta functions and the Oseen tensor G, the 
Fourier transform of (6 .5)  yields 

x f a  (sat, sa,) . G ( k ' )  * fp  ( s o p ,  s p p , )  G ( k ' )  * t a  (se,, S a m , )  

G ( k )  = (1/r/ok2)(1 - k-*kk) .  

(6.7) 

(6.8) 
where 

Explicit evaluation of kH using (6 .7)  and the iterative procedure given in the previous 
paragraph and the comparison of the results will be discussed in a later paper. 

As shown in Q 4, when the translational diffusion of the centre of mass of the chain 
and the rotational motion of the chain are included, we get the same intrinsic viscosity as 
obtained by Kirkwood and Riseman. In addition, we find for dilute solutions that there 
is no hydrodynamic screening within the pre-averaging approximation, when the 
angular velocity of a chain for a particular configuration is replaced by the average 
angular velocity. This result is in sharp contrast to the one obtained by Freed and 
Edwards. 

As the concentration of the polymer solution increases, the translational diffusion of 
the centres of mass of the chains and their rotational motion become increasingly 
suppressed. Consequently the hydrodynamic screening grows as the concentration 
increases and eventually the hydrodynamic interaction is fully screened to give the 
Rouse behaviour. The concentration dependence of the translational and rotational 
diffusion coefficients in semidilute solutions is to be investigated in order to understand 
the hydrodynamic screening fully and thus the transition from Zimm-like behaviour to 
Rouse-like behaviour. We hope to return to these points in a later paper. 

The virial expansion presented in this paper provides a natural method to treat the 
excluded volume effect on the intrinsic viscosity and the Huggins coefficient. The 
diagrams on the right-hand side of Zz in figure 1 can, in principle, be evaluated from a 
knowledge of the radial distribution function for any given strength of excluded volume 
interaction. This then provides specific viscosity as a function of the goodness of the 
solution, 

We now summarise the important results derived in this paper. 
(i) We have derived a multiple scattering theory for a solution of rigid polymers to 

obtain a cluster expansion in polymer concentration for the shear viscosity of the 
solution. Convergent and explicit expressions are obtained for the leading virial 
coefficients for the viscosity. 

(ii) At  infinite dilution, we recover the well known results of Kirkwood and 
Riseman for the intrinsic viscosity and the translational and rotational friction 
coefficients. On the other hand the [77] obtained from the Freed-Edwards theory for 
the static limit is a factor of two larger than the Kirkwood-Riseman result. 
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(iii) We demonstrate that there is no hydrodynamic screening at infinite dilution 
again in contrast with the Freed-Edwards theory. This is an important result as it refers 
to the symmetry of the equation of motion. In other words, our result shows that the 
fluid flow present in an infinitely dilute polymer solution obeys the Navier-Stokes 
equation. On the other hand the presence of hydrodynamic screening in the formula- 
tion of Freed and Edwards indicates that there is Darcy flow even in dilute solutions. 
Thus, the hydrodynamic screening at higher concentrations obtained by Freed and 
Edwards arises from the assumed Darcy flow. Although such a Darcy flow is intuitively 
obvious at very high polymer concentrations, it does not arise at lower concentrations 
thus making the Freed-Edwards theory invalid. 

(iv) At non-zero concentrations, diagrammatic expressions are obtained for the 
various virial coefficients for the viscosity, specifically an explicit expression is obtained 
for the Huggins coefficient. 

Thus the treatment presented here forms a firmer basis for the calculation of the 
transport coefficients in dilute polymer solutions than the Freed-Edwards theory and 
offers a natural extension for higher concentrations. Also it suggests that there is an 
onset of the hydrodynamic screening through the transition from the fluid flow at 
infinitely low polymer concentrations to Darcy flow at high concentrations. In general, 
the hydrodynamic screening length depends on the concentration-dependent trans- 
lational diffusion coefficient and viscosity. Therefore the calculations of kH and the 
Huggins coefficient analogues for the translational and rotational friction coefficients 
are important to understand the hydrodynamic screening at low but non-zero concen- 
trations. We plan to calculate these in the near future. 
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